WNE Linear Algebra
 Final Exam
 Series B

1 February 2022

Problems

Please use separate files for different problems. Please provide the following data in each pdf file

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks.
Problem 1.
Let $V=\operatorname{lin}((1,1,4),(1,2,-1),(2,3,3),(3,6,-3))$ be a subspace of \mathbb{R}^{3}.
a) find a basis \mathcal{A} of the subspace V and the dimension of V,
b) find a system of linear equations which set of solutions is equal to V.

Problem 2.

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{r}
2 x_{1}+3 x_{2}+5 x_{3}+2 x_{4}=0 \\
x_{1}+2 x_{2}+2 x_{3}+2 x_{4}=0
\end{array}\right.
$$

a) find a basis \mathcal{A} of the subspace V and the dimension of V,
b) for which $t \in \mathbb{R}$ does the vector $v=\left(-5, t^{2}, 1,1\right)$ belong to V ? For all such t find the coordinates of vector v relative to the basis \mathcal{A}.

Problem 3.

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear endomorphism given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(4 x_{1}+3 x_{2},-6 x_{1}-5 x_{2}\right) .
$$

Let

$$
A=M(\varphi)_{s t}^{s t}
$$

a) find the eigenvalues of φ and bases of the corresponding eigenspaces. Is matrix A diagonalizable?
b) compute A^{60}, where $A=M(\varphi)_{s t}^{s t}$.

Problem 4.

Let $\mathcal{A}=((1,1),(1,0)), \mathcal{B}=((1,3),(1,4))$ be ordered bases of \mathbb{R}^{2}. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear transformations given by the matrices

$$
M(\varphi)_{\mathcal{A}}^{s t}=\left[\begin{array}{ll}
3 & 2 \\
1 & 1 \\
0 & 1
\end{array}\right], \quad M(\psi)_{s t}^{\mathcal{B}}=\left[\begin{array}{rr}
-1 & -1 \\
1 & 2
\end{array}\right]
$$

a) find the formula of φ,
b) find the matrix $M(\varphi \circ \psi)_{s t}^{s t}$.

Problem 5.

Let $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid-x_{1}+2 x_{2}+3 x_{3}=0\right\}$ be a subspace of \mathbb{R}^{3}.
a) find an orthonormal basis of V,
b) compute the orthogonal projection of $w=(0,7,0)$ onto V.

Problem 6.

Consider the following linear programming problem $2 x_{1}+x_{2} \rightarrow \max$

$$
\left\{\begin{array}{l}
x_{1}-x_{2} \leqslant 4 \\
x_{1}+3 x_{2} \leqslant 12
\end{array} \text { and } x_{1}, x_{2} \geqslant 0\right.
$$

a) find the standard form of the problem and sketch the feasible region. Find a basic feasible set of the problem in the standard form.
b) solve the linear programming problem using simplex method. Which vertex of the feasible region corresponds to the optimal solution?

